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Much Ado about Dwarves Motifs

High-end simulation in the physical 
sciences = 7 numerical methods:

1 Structured Grids (including locally1. Structured Grids (including locally 
structured grids, e.g. Adaptive 
Mesh Refinement)

2. Unstructured Grids • Dense linear algebra arises in 2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra 

some of the largest 
computations

• It achieves high machine 
ffi ip g

6. Particles
7. Map - Reduce

efficiency
• There are important 

subcategories as we will see

01/30/2008 CS267 - Lecture 3 2

See “The View from Berkeley” report 



Dwarf Popularity (Red Hot → Blue CoolBlue Cool)

Embed SPEC DB Games ML HPC
1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 G hi l M d l12 Graphical Models
13 Unstructured Grid

• Claim: parallel architecture, language, compiler … must do at least these well to 
run future parallel apps well
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run future parallel apps well
• Note: MapReduce is embarrassingly parallel; FSM embarrassingly sequential? 



Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand 
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning
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Memory Hierarchy
• Most programs have a high degree of locality in their accesses

• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

t l

processor

on-chipi t
datapath

control
Second 

level 
cache 

(SRAM)

Main 
memory

(DRAM)

Secondary 
storage 
(Disk)

Tertiary 
storage

(Disk/Tape)
on chip 
cacheregisters

Speed 1ns 10ns 100ns 10ms 10sec

Size B KB MB GB TB
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Using a Simple Model of Memory to Optimize
2 f• Assume just 2 levels in the hierarchy, fast and slow

• All data initially in slow memory
• m = number of memory elements (words) moved between fast and

Computational 
Intensity: Key to 
algorithm efficiency

m  number of memory elements (words) moved between fast and 
slow memory 

• tm = time per slow memory operation
• f = number of arithmetic operations algorithm efficiencyf  number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow memory access
Mi i ibl ti f* t h ll d t i f t

Machine 
B l

• Minimum possible time = f* tf when all data in fast memory
• Actual time 

• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) Balance:
Key to 
machine 
efficiency 

f m f ( m f q)

• Larger q means time closer to minimum f * tf
q ≥ t /t needed to get at least half of peak speed
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y• q ≥ tm/tf needed to get at least half of peak speed



Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)y(i)  y(i)  A(i,j) x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed
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Modeling Matrix-Vector Multiplication

• Compute time for nxn = 1000x1000 matrix
• Time 

• f * t + m * t = f * t * (1 + t /t * 1/q)• f * tf + m * tm = f * tf * (1 + tm/tf * 1/q) 
• = 2*n2 * tf * (1 +  tm/tf * 1/2)

• For tf and tm, using data from R. Vuduc’s PhD (pp 351-3)
• http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
• For tm use minimum-memory-latency / words-per-cache-line 

Clock Peak Linesize t m/t fMem Lat (Min,Max)Clock Peak Linesize t_m/t_f
MHz Mflop/s Bytes

Ultra 2i 333 667 38 66 16 24.8
Ultra 3 900 1800 28 200 32 14.0
Pentium 3 500 500 25 60 32 6 3

Mem Lat (Min,Max) 
cycles machine

balance
(q must 
b t l tPentium 3 500 500 25 60 32 6.3

Pentium3M 800 800 40 60 32 10.0
Power3 375 1500 35 139 128 8.8
Power4 1300 5200 60 10000 128 15.0
Itanium1 800 3200 36 85 32 36 0

be at least
this for 
½ peak 
speed)
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Itanium1 800 3200 36 85 32 36.0
Itanium2 900 3600 11 60 64 5.5



Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand 
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

Algorithm has 2*n3 = O(n3) Flops and 
operates on 3*n2 words of memory

q potentially as large as 2*n3 / 3*n2 = O(n)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}{ y}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{ it C(i j) b k t l }{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)
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Naïve Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 to read each column of B  n times
+ n2 to read each row of A once 
+ 2n2 to read and write each element of C once
= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)So q / / ( 3 )
~= 2 for large n, no improvement over matrix-vector multiply

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)
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Matrix-multiply, optimized several ways
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Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops



Naïve Matrix Multiply on RS/6000 
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Performance looks like O(N4.7) 
Slide source: Larry Carter, UCSD



Naïve Matrix Multiply on RS/6000 
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Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n-by-n matrix viewed as N-by-N matrices of b-by-b 
subblocks where           b=n / N is called the block size 

for i = 1 to Nfor i  1 to N
for j = 1 to N

{read block C(i,j) into fast memory}
for k = 1 to Nfor k = 1 to N

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i j) C(i j) A(i k) * B(k j) {d t i lti l bl k }C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)
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Blocked (Tiled) Matrix Multiply
Recall:

m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, 2n3 for this problem
q = f / m is our measure of algorithm efficiency in the memory system

So:So:
m =  N*n2 read each block of B  N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)

+ N*n2 read each block of A  N3 times
+ 2n2 read and write each block of C once+ 2n2 read and write each block of C once
=  (2N + 2) * n2

S t ti l i t it f / 2 3 / ((2N 2) * 2)So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
~= n / N = b  for large n

So we can improve performance by increasing the blocksize b 
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Can be much faster than matrix-vector multiply (q=2)



Using Analysis to Understand Machines
The blocked algorithm has computational intensity q ~= b
• The larger the block size, the more efficient our algorithm will be
• Limit:   All three blocks from A,B,C must fit in fast memory (cache), so y ( )

we cannot make these blocks arbitrarily large 
• Assume your fast memory has size Mfast

3b2 <= Mfast, so q ~= b <= sqrt(Mfast/3)3b  Mfast, so q  b  sqrt(Mfast/3)

required
t_m/t_f KB

• To build a machine to run matrix 
multiply at 1/2 peak arithmetic speed 
f th hi d f t Ultra 2i 24.8 14.8

Ultra 3 14 4.7
Pentium 3 6.25 0.9
Pentium3M 10 2.4

of the machine, we need a fast 
memory of size 

Mfast >= 3b2 ~= 3q2 = 3(tm/tf)2 

Power3 8.75 1.8
Power4 15 5.4
Itanium1 36 31.1
Itanium2 5 5 0 7

• This size is reasonable for L1 cache, 
but not for register sets

• Note: analysis assumes it is possible 
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Itanium2 5.5 0.7to schedule the instructions perfectly



Limits to Optimizing Matrix Multiply
• The blocked algorithm changes the order in which values are 

accumulated into each C[i,j] by applying associativity
• Get slightly different answers from naïve code, because of roundoff - OK

• The previous analysis showed that the blocked algorithm has 
computational intensity:

q ~= b <= sqrt(Mfast/3)

• There is a lower bound result that says we cannot do any better than 
this (using only associativity)( g y y)

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm 
(that uses only associativity) is limited to q = O(sqrt(Mf t))(that uses only associativity) is limited to q  O(sqrt(Mfast))

• What if more levels of memory hierarchy?
Appl blocking rec rsi el once per le el
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• Apply blocking recursively, once per level



Recursion: Cache Oblivious Algorithms
• The tiled algorithm requires finding a good block size
• Cache Oblivious Algorithms offer an alternative

• Treat nxn matrix multiply set of smaller problems• Treat nxn matrix multiply set of smaller problems
• Eventually, these will fit in cache

• Cases for A (nxm) * B (mxp)
• Case1: m>= max{n,p}: split A horizontally:
• Case 2 : n>= max{m,p}: split A vertically and B horizontally 
• Case 3: p>= max{m,n}: split B vertically
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( ) ( )2121 ,, BABABBA =
Case 3



Experience

• In practice, need to cut off recursion
I l ti hi h f C h Obli i d i• Implementing a high-performance Cache-Oblivious code is 
not easy
• Careful attention to micro-kernel and mini-kernel is needed

• Using fully recursive approach with highly optimized 
recursive micro-kernel, Pingali et al report that they never 
got more than 2/3 of peak.g p

• Issues with Cache Oblivious (recursive) approach
• Recursive Micro-Kernels yield less performance than iterative ones 

using same scheduling techniquesusing same scheduling techniques
• Pre-fetching is needed to compete with best code: not well-

understood in the context of CO codes
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Unpublished work, presented at LACSI 2006



Recursive Data Layouts
• Blocking seems to require knowing cache sizes – portable?
• A related idea is to use a recursive structure for the matrix
• There are several possible recursive decompositions depending on 

the order of the sub-blocks
• This figure shows Z-Morton Ordering (“space filling curve”)
• See papers on “cache oblivious algorithms” and “recursive layouts”p p g y
• Will be in next LAPACK release (Gustavson, Kagstrom, et al, SIAM 

Review, 2004)

Advantages: 
• the recursive layout works well 

for any cache size
Disadvantages:
• The index calculations to find 

A[i,j] are expensive
I l t ti it h t
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• Implementations switch to 
column-major for small sizes



Strassen’s Matrix Multiply

• The traditional algorithm (with or without tiling) has O(n^3) flops
• Strassen discovered an algorithm with asymptotically lower flops

O( ^2 81)• O(n^2.81)
• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds

• Strassen does it with 7 multiplies and 18 adds

Let M =  m11 m12  =  a11 a12     b11 b12

m21 m22 = a21 a22      b21 b22

Let p1 = (a12 a22) * (b21 + b22) p5 = a11 * (b12 b22)Let p1 = (a12 - a22)  (b21 + b22)                               p5 = a11  (b12 - b22)

p2 = (a11 + a22) * (b11 + b22)                              p6 = a22 * (b21 - b11)

p3 = (a11 - a21) * (b11 + b12)                               p7 = (a21 + a22) * b11

p4 = (a11 + a12) * b22p4 = (a11 + a12)  b22

Then  m11 = p1 + p2 - p4 + p6

m12 = p4 + p5

m21 = p6 + p7

Extends to nxn by divide&conquer
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m21  p6 + p7

m22 = p2 - p3 + p5 - p7



Strassen (continued)
T(n)      = Cost of multiplying nxn matrices
             = 7*T(n/2) + 18*(n/2)2 

= O(n log2 7)             =  O(n log2 7)
             = O(n 2.81) 

 

 

• Asymptotically faster 
• Several times faster for large n in practice
• Cross-over depends on machine

A il bl i l lib i• Available in several libraries
• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, 

M. S. Thottethodi, S. Chatterjee, and A. Lebeck,  in Proceedings 
of Supercomputing '98of Supercomputing 98 

• Caveats
• Needs more memory than standard algorithm
• Can be less accurate because of roundoff error
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Can be less accurate because of roundoff error



Other Fast Matrix Multiplication Algorithms

• Current world’s record is O(n 2.376... ) 
(Coppersmith & Winograd)
Why does Hong/Kung theorem not apply?• Why does Hong/Kung theorem not apply?

• Possibility of O(n2+ε) algorithm! (Cohn, Umans, 
Kleinberg 2003)Kleinberg, 2003)

• Fast methods (besides Strassen) may need 
unrealistically large ny g
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Short Break

Questions about course?Questions about course?
Homework 1 coming soon (Friday)

CS267 Lecture 3 26



Outline

• Recap from Lecture 2
• Memory hierarchy is important to performance

U f i l f d l t d t d• Use of simple performance models to understand 
performance

• Case Study: Matrix Multiplication
• Blocking algorithms
• Other tuning techniques
• Alternate algorithms

• Automatic Performance Tuning
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Search Over Block Sizes
• Performance models are useful for high level algorithms

• Helps in developing a blocked algorithm
• Models have not proven very useful for block size selectionp y

• too complicated to be useful
– See work by Sid Chatterjee for detailed model

• too simple to be accuratep
– Multiple multidimensional arrays, virtual memory, etc.

• Speed depends on matrix dimensions, details of code, compiler, 
processor

• Some systems use search over “design space” of 
possible implementations

• Atlas – incorporated into Matlab• Atlas – incorporated into Matlab
• BeBOP – http://bebop.cs.berkeley.edu/
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What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space The dark blue region was pruned
Number of rows in register block
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A 2 D slice of a 3 D register tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)



Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code on Itanium 2Naïve and a naïvely tiled  code on Itanium 2

• Searched all block sizes to find best, b=56
• Starting point for next homework
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600M

3 loops
blocked, b=56

0
0 200 400 600 800

Matrix dimension
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Matrix dimension



Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables
• Tiling for multiple levels of cache and TLBTiling for multiple levels of cache and TLB
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining
• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area• Automatic optimization an active research area

• BeBOP: bebop.cs.berkeley.edu/
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas
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Removing False Dependencies
• Using local variables, reorder operations to remove false 

dependencies
[i] b[i] + f l d ft it h da[i] = b[i] + c;
a[i+1] = b[i+1] * d;

false read-after-write hazard
between a[i] and b[i+1]

float f1 = b[i];
fl t f2 b[i+1]float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

With some compilers, you can declare a and b unaliased.
• Done via “restrict pointers,” compiler flag, or pragma
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Exploit Multiple Registers
• Reduce demands on memory bandwidth by pre-loading 

into local variables
while( ) {while( … ) {

*res++ = filter[0]*signal[0]
+ filter[1]*signal[1]
+ filter[2]*signal[2];

signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ) {

also: register float f0 = …;

while( … ) {
*res++ = f0*signal[0]

+ f1*signal[1]
+ f2*signal[2];

Example is a convolution
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signal++;
}



Minimize Pointer Updates
• Replace pointer updates for strided memory addressing 

with constant array offsets
f0 * 8 8 + 4f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 8[4]f1 = r8[4];
f2 = r8[8];
r8 += 12;

Pointer vs. array expression costs may differ.
• Some compilers do a better job at analyzing one than the other

01/30/2008 CS267 - Lecture 3 34



Loop Unrolling
• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {

signal += 3;signal +  3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;

1 i l[1]s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;

s2 = signal[2];g [ ]
res[2] = f0*s0 + f1*s1 + f2*s2;

res += 3;
} while( );
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} while( … );



Expose Independent Operations
• Hide instruction latency

• Use local variables to expose independent operations that can 
execute in parallel or in a pipelined fashion

• Balance the instruction mix (what functional units are 
available?)

f1 = f5 * f9;;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
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Copy optimization
• Copy input operands or blocks

• Reduce cache conflicts
• Constant array offsets for fixed size blocksy
• Expose page-level locality
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ATLAS Matrix Multiply (DGEMM n = 500)

Source: Jack Dongarra
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comparable with machine-specific libraries provided by the vendor.



Experiments on Search vs. Modeling

Alpha 21264St d h (Atl t

Power 4

Power 3

Alpha 21264

Refined Model

Model

Study compares search (Atlas to 
optimization selection based on 
performance models)

UltraSparc IIIi

R12K

Power 4

Unleashed

Refined Model

•Ten modern architectures
• Model did well on most cases

• Better on UltraSparc

Opteron 240

Itanium2
• Worse on Itanium

• Eliminating performance gaps: 
think globally, search locally

ll f

Pentium III

Athlon MP
-small performance gaps: 

local search
-large performance gaps:
refine model

0% 50% ATLAS 150% 200%

Pentium 4
refine model

• Substantial gap between   
ATLAS CGw/S and ATLAS 
Unleashed on some machines
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0% 50% ATLAS

CGw�S

100%

150% 200%Unleashed on some machines

Source: K. Pingali.  Results from IEEE ’05 paper by K Yotov, X Li, G Ren, M Garzarán, D Padua, K 
Pingali, P Stodghill. 



Locality in Other Algorithms
• The performance of any algorithm is limited by q

• q = # flops / # memory refs = “Computational Intensity”
• In matrix multiply we increase q by changingIn matrix multiply, we increase q by changing 

computation order
• Reuse data in cache (increased temporal locality)

• For other algorithms and data structures, tuning still an 
open problemp p

• sparse matrices (blocking, reordering, splitting)
• Weekly research meetings
• Bebop.cs.berkeley.edup y
• OSKI – tuning sequential sparse-matrix-vector multiply and 

related operations
• trees (B-Trees are for the disk level of the hierarchy)
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• linked lists (some work done here)



Dense Linear Algebra is not All Matrix Multiply
Main dense matrix kernels are in an industry standard interface called• Main dense matrix kernels are in an industry standard interface called 
the BLAS: Basic Linear Algebra Subroutines

• www.netlib.org/blas,    www.netlib.org/blas/blast--forum
• Vendors others supply optimized implementations• Vendors, others supply optimized implementations

• History
• BLAS1 (1970s): 

• vector operations: dot product saxpy (y=α*x+y) etc• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etcp p y,
• m=n^2, f=2*n^2, q~2, less overhead 
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is 

potentially much faster than BLAS2
• Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)
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Good algorithms used BLAS3 when possible (LAPACK & ScaLAPACK)
• See www.netlib.org/{lapack,scalapack}
• Not all algorithms *can* use BLAS3



BLAS speeds on an IBM RS6000/590
Peak speed = 266 Mflops

P k
BLAS 3
Peak

BLAS 2BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs 
BLAS 2 (n by n matrix vector multiply) vs
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BLAS 2 (n-by-n matrix vector multiply) vs 
BLAS 1 (saxpy of  n vectors)



Dense Linear Algebra: BLAS2 vs. BLAS3
• BLAS2 and BLAS3 have very different computational 

intensity, and therefore different performance
BLAS3 (M t i M t i ) BLAS2 (M t i V t )BLAS3 (MatrixMatrix) vs. BLAS2 (MatrixVector)
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Other Automatic Tuning Efforts

• FFTW (MIT): “Fastest Fourier Transform in the West”
• Sequential (and parallel)
• Many variants (real/complex, sine/cosine, multidimensional)y ( p )
• 1999 Wilkinson Prize
• www.fftw.org

• Spiral (CMU)p ( )
• Digital signal processing transforms
• FFT and beyond
• www.spiral.net

• BEBOP (UCB)
• http://bebop.cs.berkeley.edu
• OSKI - Sparse matrix kernels
• Stencils – Structure grid kernels (with LBNL)

• Interprocessor communication kernels
• Bebop (UPC), Dongarra (UTK for MPI)
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• Class projects available



Summary
• Performance programming on uniprocessors requires

• understanding of memory system
• understanding of fine-grained parallelism in processor 

• Simple performance models can aid in understanding
• Two ratios are key to efficiency (relative to peak)

1 t ti l i t it f th l ith1.computational intensity of the algorithm: 
• q = f/m = # floating point operations / # slow memory references

2.machine balance in the memory system: 
• tm/tf = time for slow memory reference / time for floating point operation

• Blocking (tiling) is a basic approach to increase q
• Techniques apply generally, but the details (e.g., block size) are 

architecture dependent
• Similar techniques are possible on other data structures and algorithms

• Now it’s your turn: Homework 1 
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• Work in teams of 2 or 3 (assigned this time)



Reading for Today
“P ll l C ti S b k” Ch t 2 & 3• “Parallel Computing Sourcebook” Chapters 2 & 3

• "Performance Optimization of Numerically Intensive Codes", by 
Stefan Goedecker and Adolfy Hoisie, SIAM 2001. 

• Web pages for reference:• Web pages for reference:
• BeBOP Homepage
• ATLAS Homepage
• BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized)BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) 

implementations of the BLAS, with documentation. 
• LAPACK (Linear Algebra PACKage), a standard linear algebra library 

optimized to use the BLAS effectively on uniprocessors and shared 
memory machines (software documentation and reports)memory machines (software, documentation and reports) 

• ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for 
distributed memory machines (software, documentation and reports) 

• Tuning Strassen's Matrix Multiplication for Memory Efficiency 
Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck 
in Proceedings of Supercomputing '98, November 1998 postscript

• Recursive Array Layouts and Fast Parallel Matrix Multiplication” by 
Chatterjee et al. IEEE TPDS November 2002.
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Chatterjee et al. IEEE TPDS November 2002.



Questions You Should Be Able to Answer
1. What is the key to understand algorithm efficiency in 

our simple memory model? 
2 What is the key to understand machine efficiency in2. What is the key to understand machine efficiency in 

our simple memory model? 
3. What is tiling? 
4. Why does block matrix multiply reduce the number of 

memory references? 
5 What are the BLAS?5. What are the BLAS? 
6. Why does loop unrolling improve uniprocessor 

performance? 
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